XVIth International Workshop on Quantum Systems in Chemistry and Physics 

Abstract 
Finite Fermi Systems in Strong External DC Electric and Laser Fields: New Quantum Approach

Alexander V. Glushkov^{1,2}
^{1} Odessa University, Odessa9, SE, Ukraine,
^{2} ISAN, Russian Academy of Sciences, Troitsk, Moscow reg., Russia 
We present new quantum method for studying interaction of the finite Fermi systems (atoms, nuclei, diatomics) with an intense and superintense external fields (DC electric and laser fields). New quantum method is the combined relativistic operator perturbation theory and relativistic energy approach [1,2]. The energy approach is based on the GellMann and Low adiabatic formalism and formalism of the relativistic Green function for the Dirac equation with nonsingular potential and complex energy [2]. The operator perturbation theory formalism includes a new quantization procedure of the KohnShan and Dirac equations states of the finite Fermisystems in a strong field. The key feature is that the zeroth order Hamiltonian, possessing only stationary states, is determined only by its spectrum without specifying its explicit form. Some results of the calculation for the DC, AC strong field Stark resonances, multiphoton resonances, broadening autoionization resonances, ionization profiles for the H, Cs, Yb, Gd atoms are presented and compared with results of other known theories [3]. Especial interest attracts new relativistic treating of the drastic broadening effect of widths for the reorientation decay autoionization resonances in lanthanides [1]. The direct interaction of super intense laser fields in the optical frequency domain with nuclei is studied and the AC Stark effect for nuclei is described within the operator perturbation theory and the relativistic meanfield (plus DiracWoodsSaxon) model for the groundstate calculation of the nuclei 49Sc, 168Er, 171Yb. The results are compared with other available data [3].
References :
[1]. A.V.Glushkov, L.N.Ivanov, Phys.Lett.A.170,36 (1992); J.Phys. B 26, L379 (1993); Preprints ISAN NAS13, Moscow (1992).
[2]. A.V.Glushkov et al, Int.J.Quant.Chem.99, 936 (2004); 104, 562 (2005); 109, 1717 (2009); 111, 286 (2011); Frontiers in Quantum Systems in Chem. and Phys. (Springer), 15, 285 (2006); 18, 505585 (2008), 20, 127 (2009);
[3] E.Brandas, P.Froelich, Phys.Rev.A 16, 2207 (1977); J.Rao, B.Li, Phys.Rev.A 51,4526 (1995); T.Burvenichm J.Evers, C.H.Keitel, Phys.Rev.Lett. 96, 142501 (2006); A.Glushkov, L.N.Ivanov, V.S.Letokhov, Preprint ISAN NAS4, MoscowTroitsk (1991). 

Laser ElectronGammaNuclear Spectroscopy of Atoms and Multicharged Ions and NEET Effects in Heavy Nuclei: Relativistic Energy Approach 
Alexander V. Glushkov,^{1,2} Olga Yu. Khetselius^{1} Svetlana Malinovskaya^{1} and Andrey A. Svinarenko^{1}
^{1}Odessa University, Odessa9, SE, Ukraine
^{2}ISAN, Russian Academy of Sciences, Troitsk, Moscow reg., Russia 
In the resonant process of nuclear excitation by electron transition (NEET) or electron capture (NEEC) an electron is captured into a bound atomic shell with the simultaneous excitation of the nucleus. The excited nucleus can then decay radiatively or by internal conversion. In the latter case, a resonant inelastic electron scattering on the nucleus occurs. Here we present consistent, relativistic approach to calculation of the probabilities of the different cooperative laser electrongammanuclear processes in atoms, ions, nuclei and resonant NEET (NEEC) processes in heavy nuclei, based on the relativistic density functional (DF) formalism and energy approach (Smatrix formalism of GellMann and Low) [2]. Decay and excitation probability is linked with the imaginary part of energy of the excited state for the “electron shell nucleusphotons” system. For radiate decays it is manifested as effect of retarding in interaction and selfaction and calculated within QED DFT theory [2]. We firstly present data about intensities of the electron satellites in gammaspectra of nuclei in the neutral (low lying transitions) and multicharged Oand Flike ions for isotopes 57Fe, 133Cs, 171Yb and discover a new effect of the giant increasing electron satellites intensities under transition from the neutral atoms to multicharged ions. We present new, more accurate data about NEET probabilities in the nuclei of 189Os, 197Au (with comparison with theoretical data by Tkalya and experimantal data of Argonne Nat.Lab. and Japan Synchrotron Centre [3]) and firstly for nuclei of 193Ir, 235U, 268Mt.
References:
[1]. L.N.Ivanov, V.S.Letokhov, JETP. 93, 396 (1987); A.V.Glushkov, L.Ivanov, Phys.Lett.A 170, 33 (1992); A.V.Glushkov, L.N.Ivanov, V.S.Letokhov, Preprint of ISAN N AS4, Troitsk, (1992); E.V.Tkalya, Phys.Rev.A.75, 022509 (2007); T.J. Burvenichm J.Evers, C.H.Keitel, Phys. Rev. C. 74, 044601 (2007) ; A.Shahbaz, C.Muller, A.Staudt, T.J.Burvenich, C.H.Keitel, Phys.Rev.Lett.98, 263901 (2007).
[2]. A.Glushkov et al, J.Phys.CS. 11, 188 (2005); 35, 425 (2005); Int.J.Quant.Chem. 104, 512, 562 (2005); 99, 889, 936 (2004); Europ.Phys.Journ. 160, 195 (2009); Phys.Scr.T135, 014022 (2009).
[3]. S.Kishimoto, Y.Yoda, Y.Kobayashi etal, Phys.Rev.C74, 031301 (2006); I. Ahmad, R.Dunfird, H.Esbensen etal, Phys.Rev.C61, 051304 (2000). 

