XVIth International Workshop on
Quantum Systems in
Chemistry and Physics
QSCP logo Abstract
 Main | Registration | Abstract Submission | List of Registrants | List of Abstracts | Program 
Accommodation | Location and Access | Previous Workshops | ISTCP-VII | Photos
Oral presentations only. Posters only. Show all.

Relativistic coupled cluster methods: benchmark applications for heavy element chemistry
Lucas Visscher
Amsterdam Center for Multiscale Modeling
VU University Amsterdam
Molecular complexes of the heaviest transition metals are interesting due to their applications in catalysis and nanostructured materials. For understanding details of the associated reaction mechanisms and analyzing spectroscopic observations it is therefore desirable to develop quantum chemical methods that can provide estimates of reaction barriers and excitation energies with quantitative accuracy. This demands a rigorous treatment of both relativistic and electron correlation effects. With the advent of eXact 2-Component (X2C) relativistic methods[1], all-electron treatments that include both scalar relativistic effects and spin-orbit coupling effects from the outset have become much more practical, leaving the electron-correlation stage of the calculation as the rate determining step.
By treating some recent applications[2] of relativistic coupled-cluster theory[3] I will discuss the current status of these techniques[4] in comparison with other methods like multireference perturbation theory, multireference configuration interaction and density functional theory. I will focus on excitation energies but also discuss the application of relativistic electronic structure methods to molecular properties, in particular those properties that are strongly influenced by relativistic effects such as nuclear quadrupole coupling constants, NMR shieldings and Mössbauer istope shifts

[1] K. Dyall, J. Chem. Phys. 106 (1997) 9618. M. Iliaš, H. J. A. Jensen, V. Kellö, B. O. Roos, and M. Urban, Chem. Phys. Lett. 408 (2005) 210. W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102. M. Filatov, J. Chem. Phys. 125 (2006) 107101. W. Kutzelnigg and W. Liu, J. Chem. Phys. 125 (2006) 107102. M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102. J. Sikkema, L. Visscher,T. Saue, M. Iliaš, J. Chem. Phys. 131 (2009) 124116.
[2] L. Belpassi et al. J. Chem. Phys. 126 (2007) 064314. A. S. P. Gomes et al. J. Chem. Phys. 133 (2010), 064305. R. L. A. Haiduke, A. B. F. Da Silva, L. Visscher Chem. Phys. Lett. 445 (2007) 95. S. Knecht et al., Theor. Chem. Acc. (2011) 631. F. Réal, A. S. P. Gomes, L. Visscher, V. Vallet, E. Eliav, J. Phys. Chem. A 113 (2009) 12504. P. Tecmer, A. S. P. Gomes, U. Ekstrom, L. Visscher, PCCP 13 (2011) 6249.
[3] L. Visscher, T. Lee, and K. Dyall, J. Chem. Phys. 105 (1996) 8769; L. Visscher, E. Eliav, and U. Kaldor, J. Chem. Phys. 115, (2001) 9720; H. S. Nataraj, M. Kallay, and L. Visscher, J. Chem. Phys. 133 (2010) 234109 .
[4] DIRAC, a relativistic ab initio electronic structure program, Release DIRAC10 (2010), written by T. Saue, L. Visscher and H. J. Aa. Jensen, with new contributions from R. Bast, K. G. Dyall, U. Ekström, E. Eliav, T. Enevoldsen, T. Fleig, A. S. P. Gomes, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, H. S. Nataraj, P. Norman, J. Olsen, M. Pernpointner, K. Ruud, B. Schimmelpfennnig, J. Sikkema, A. Thorvaldsen, J. Thyssen, S. Villaume, and S. Yamamoto (see http://dirac.chem.vu.nl).

 Main | Registration | Abstract Submission | List of Registrants | List of Abstracts | Program 
Accommodation | Location and Access | Previous Workshops | ISTCP-VII | Photos